Single-step, high pressure, and two-step spark plasma sintering of UO2 nanopowders

نویسندگان

چکیده

Three different spark plasma sintering (SPS) treatments were applied to highly sinteractive, near-stoichiometric UO2.04 nanocrystalline (5 nm) powders produced by U(IV) oxalate hydrothermal decomposition at 170 °C. The conditions for reaching 95 % theoretical density (TD) in regular SPS, high pressure SPS (HP-SPS), and, the first time, two-step (2S-SPS), determined. Densification TD was achieved 1000 °C (70 MPa pressure), 660 HP-SPS (500 MPa), and 650−550 2S-SPS MPa). With goal of minimising grain growth during densification, optimised favour densification over coarsening, final microstructures thus obtained are compared. Equally dense UO2 samples sizes, ranging from 3.08 μm 163 nm, produced. Room-temperature oxidation could not be avoided due their nanometric dimensions, a annealing treatment designed reduce hyperstoichiometric UO2.00.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On the Role of the Electrical Field in Spark Plasma Sintering of UO2+x

The electric field has a large effect on the stoichiometry and grain growth of UO2+x during Spark Plasma Sintering. UO2+x is gradually reduced to UO2.00 as a function of sintering temperature and time. A gradient in the oxidation state within the pellets is observed in intermediate conditions. The shape of the gradient depends unequivocally on the direction of the electrical field. The positive...

متن کامل

Spark plasma sintering of alumina nanopowders produced by electrical explosion of wires

Alumina nanopowders produced by electrical explosion of wires were sintered using the spark plasma sintering technique. The results of XRD analysis show that the main phase in the compacted nanopowders is α-Al2O3. According to the SEM observations, the sintered alumina nanopowder consists of micron-sized faceted grains and nano-sized necked grains. The increase in sintering temperature resulted...

متن کامل

Fabrication of Nanostructured Cu matrix Nanocomposites by High Energy Mechanical Milling and Spark Plasma Sintering

Spark plasma sintering (SPS) is a sintering process that is capable of sintering hard worked powders in short times. This technique was used to fabricate bulk Cu and Cu-SiC nanocomposites. Pure Cu and mixed powders of Cu including 4 vol% of SiC nanoparticles were mechanically alloyed for 25 h and sintered at 750˚C under vacuum condition by SPS method. Microstructures of the materials were chara...

متن کامل

Spark Plasma Sintering of Ultra-High Temperature Tantalum/Hafnium Carbides Composite

TaC and HfC are thought to have the highest melting point (~4000°C) among all refractory materials. The binary solid solution of TaC and HfC (Ta4HfC5) is also considered as the most refractory material with the melting point over 4000 °C and valuable physical and mechanical properties. The main goal of this work is to fabricate TaC/HfCbased composites which consolidated by means of spark plasma...

متن کامل

single-step synthesis of multi-component spirobarbiturates using ionic liquids and synthesis of substituted pyridine filled with catalysts supported on solid substrate

in this thesis, a better reaction conditions for the synthesis of spirobarbiturates catalyzed by task-specific ionic liquid (2-hydroxy-n-(2-hydroxyethyl)-n,n-dimethylethanaminium formate), calcium hypochlorite ca(ocl)2 or n-bromosuccinimide (nbs) in the presence of water at room temperature by ultrasonic technique is provided. the design and synthesis of spirocycles is a challenging task becaus...

15 صفحه اول

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of The European Ceramic Society

سال: 2021

ISSN: ['0955-2219', '1873-619X']

DOI: https://doi.org/10.1016/j.jeurceramsoc.2021.01.020